The perfect matching cut problem revisited
نویسندگان
چکیده
In a graph, perfect matching cut is an edge that matching. (pmc) the problem of deciding whether given graph has cut, and known to be NP-complete. We revisit show pmc remains NP-complete when restricted bipartite graphs maximum degree 3 arbitrarily large girth. Complementing this hardness result, we give two classes in which polynomial-time solvable. The first one includes claw-free without induced path on five vertices, second properly contains all chordal graphs. Assuming Exponential Time Hypothesis, there no O⁎(2o(n))-time algorithm for even n-vertex graphs, also can solved O⁎(1.2721n) time by means exact branching algorithm.
منابع مشابه
On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance
Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...
متن کاملThe swap matching problem revisited
In this paper, we revisit the much studied problem of Pattern Matching with Swaps (Swap Matching problem, for short). We first present a graph-theoretic model, which opens a new and so far unexplored avenue to solve the problem. Then, using the model, we devise two efficient algorithms to solve the swap matching problem. The resulting algorithms are adaptations of the classic shift-and algorith...
متن کاملThe Complexity of the Matching-Cut Problem
Finding a cut or finding a matching in a graph are so simple problems that they are hardly considered problems at all. In this paper, by means of a reduction from the NAE3SAT problem, we prove that combining these two problems together, i.e., finding a cut whose split edges are a matching is an NP-complete problem. It remains intractable even if we impose the graph to be simple (no multiple edg...
متن کاملOn the Bipartite Unique Perfect Matching Problem
In this note, we give tighter bounds on the complexity of the bipartite unique perfect matching problem, bipartite-UPM. We show that the problem is in C=L and in NL , both subclasses of NC. We also consider the (unary) weighted version of the problem. We show that testing uniqueness of the minimum-weight perfect matching problem for bipartite graphs is in L= and in NL. Furthermore, we show that...
متن کاملThe Polynomially Bounded Perfect Matching Problem Is in NC 2
The perfect matching problem is known to be in ¶, in randomized NC, and it is hard for NL. Whether the perfect matching problem is in NC is one of the most prominent open questions in complexity theory regarding parallel computations. Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs with polynomially bounded permanent. They showed that for such bipartite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2022
ISSN: ['1879-2294', '0304-3975']
DOI: https://doi.org/10.1016/j.tcs.2022.07.035